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Design Principles and Guidelines for Security 

Timothy E. Levin, Cynthia E. Irvine, Terry V. Benzel, 
Ganesha Bhaskara, Paul C. Clark, Thuy D. Nguyen 

 
 
 

I. Introduction 
Cyber-security vulnerabilities are rampant. The majority of commodity computing and 
communication platforms have been designed to meet performance and functionality 
requirements with little attention to trustworthiness. The transformation from traditional 
stand-alone computers to highly interconnected, pervasive, and mobile computing 
systems, profoundly increases the vulnerabilities of current systems, and exacerbates the 
need for more trustworthy computing and communications platforms.    

While there is a significant history of secure systems design and development focusing 
on one or more of the triad of hardware, networking and operating systems, there are few 
worked examples.[27] To date, only special purpose systems begin to meet the 
requirements to counter either the modern or historical threats. Despite of over thirty 
years of research and development, a trustworthy product built at the commodity level 
remains elusive. 

In addition to security, other factors including performance, size, cost and energy 
consumption must all be reasonably accounted for when building a secure system.  These 
factors are especially important for viability in the commodity market, where client 
computing devices have constrained resources but high performance requirements.  

We have reviewed the fundamental security principles from more than four decades of 
research and development in information security technology. As a result of advancing 
technology, we found that some of the early “principles” require re-examination. For 
example, previous worked examples of combinations of hardware, and software may 
have encountered problems of performance and extensibility, which may no longer exist 
in today’s environment. Moore’s law in combination with other advances has yielded 
better performance processors, memory and context switching mechanisms.  Secure 
systems design approaches to networking and communication are beginning to emerge 
and new technologies in hardware-assisted trusted platform development [40] and 
processor virtualization open hither-to previously unavailable possibilities. 

This report provides a distillation, synthesis and organization of key security systems 
design principles, describes each principle, and provides examples where needed for 
clarity. Our analysis of key principles for secure computing started with the landmark 
work of Saltzer and Schroeder [32] and surveyed the refinement of these principles as 
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systems have evolved to the present. [3], [12], [28], [31],[39]  The focus, here, is to 
provide a concise summary articulation of the principles as they apply to the development 
of the most elemental components of a basic security system. 
A limitation in some descriptions of secure system development principles is the premise 
that “security vulnerabilities result from defects that are unintentionally introduced into 
the software during design and development.”[9] In contrast to those efforts and the 
related software engineering “safety” paradigm [22], this articulation of design principles 
differs in two ways.  First, our perspective not only acknowledges the risk of 
unintentional flaws, it explicitly assumes that unspecified functionality may be 
intentional.  An adversary within the development process is assumed.  Second, our 
analysis considers both the design of components as well as the composition of 
components to form a coherent security architecture that takes into account hardware, 
software and networking design elements. 
Finally, we note that in Computer Science “principle” is commonly used to refer to a 
“generalization that provides a basis for reasoning,”[42] (e.g., “the principle of least 
privilege”) as opposed to something that is asserted to be always true (such as the 
“Pigeonhole principle” in Mathematics). In this document we follow that common usage, 
and where appropriate, attempt to describe the context in which a given generalization 
can be considered to be true.  
The remainder of this section provides the definitions for commonly used terms, and an 
illustration of our overall taxonomy of security principles.  Following this, we present, in 
separate sections, the principles for: structure, logic and function, and system lifecycle.  
Finally, we end with some “lessons from the past,” and identify some potential conflicts 
in the application of the described principles. 

A. Definitions 

Component: any part of a system that, by itself, provides all or a portion of the total 
functionality required of a system. A component is recursively defined to be an individual 
unit, not useful to further subdivide, or a collection of components up to and including 
the entire system. A component may be software, hardware, etc.  For this report it is 
assumed that an atomic component – one not consisting of other components – may 
implement one or more different functions, but the degree of trustworthiness of the 
component is homogeneous across its functions. 

A system is made up of one or more components, which may be linked (interact through 
the same processor), tightly coupled (e.g., share a bus), distributed (interact over a wire 
protocol), etc.   
Failure: a condition in which, given a specifically documented input that conforms to 
specification, a component or system exhibits behavior that deviates from its specified 
behavior.  

Module: a unit of computation that encapsulates a database and provides an interface for 
the initialization, modification, and retrieval of information from the database.  The 
database may be either implicit, e.g. an algorithm, or explicit. 
Process: a program in execution. 



Design Principles and Guidelines for Security 

  
3 

Reference Monitor Concept: an access control concept that refers to an abstract machine 
that mediates all accesses to objects by active entities. By definition, the ideal mechanism 
is protected from unauthorized modification and can be analyzed for correctness [2]. 
Security Mechanisms: system artifacts that are used to enforce system security policies. 

Security Principles: guidelines or rules that when followed during system design will aid 
in making the system secure. 

Security Policies: Organizational Security Policies are “the set of laws, rules, and 
practices that regulate how an organization manages, protects, and distributes sensitive 
information.”[37]  System Security Policies are rules that the information system 
enforces relative to the resources under its control to reflect the organizational security 
policy. In this document, “security policy” will refer to the latter meaning, unless 
otherwise specified. 

Service: processing or protection provided by a component to users or other components.  
E.g., communication service (TCP/IP), security service (encryption, firewall). 

Trustworthy (adjective): the degree to which the security behavior of the component is 
demonstrably compliant with its stated functionality (e.g., trustworthy component). 
Trust: (verb) the degree to which the user or a component depends on the trustworthiness 
of another component.  For example, component A trusts component B, or component B 
is trusted by component A. Trust and trustworthiness are assumed to be measured on the 
same scale. 

  
 

B. Security Design Principles Overview 

Security design principles are organized in a taxonomy with three primary groups, shown 
in Figure 1. Each primary group is described in detail in the sections that follow. The 
final section in this report provides some commentary and lessons learned. 



Design Principles and Guidelines for Security 

  
4 

 

II. Structure 
Structural design principles affect the fundamental architecture of the system: how the 
components relate to each other and the nature of their interfaces. We start with the 
fundamental need for economy and elegance in a system. 

A. Economy and Elegance 

Clear Abstractions 
The principle of clear abstractions states that a system should have simple, well-defined 
interfaces and functions that provide a consistent and intuitive view of the data and how it 
is managed. The elegance (e.g., clarity, simplicity, necessity, sufficiency) of the system 
interfaces, combined with a precise definition of their functional behavior promotes ease 
of analysis, inspection and testing as well as correct and secure use of the system.  It is 
difficult to quantify the clarity of abstractions, and that will not be attempted here.   
Techniques used to support this principle include avoidance of redundant, unused 
interfaces; information hiding and avoidance of semantic overloading of interfaces or 

Clear Abstractions

Modularity

Least Common Mechanism

Partially Ordered Dependencies

Efficiently Mediated Access

Minimized Sharing

Reduced Complexity

Economy and Elegance

Evolvability

Trusted Components

Hierarchical Trust

Inverse Modification Threshold

Hierarchical Protection

Minimized Security Elements

Least Privilege

Self-reliant Trustworthiness

Trust

Secure Distributed Composition

Trusted Communication Channels

Secure Composition

Structure
- how it is organized

Continuous Protection of Information

Secure Metadata Management

Self Analysis

Accountability and Traceability

Secure Defaults

Secure Failures

Economic Security

Performance Security

Ergonomic Security

Acceptable Security

Logic and Function
- what it does; its

essential activities

Repeatable, Documented Procedures

Procedural Rigor

Secure System Modification

Sufficient User Documentation

System Life Cycle
- how it is managed

Secure System Design Principles

 

Figure 1. Taxonomy of security design principles 
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their parameters.  Other techniques for simplifying programs are to:  
 Limit functions to have single entry and exit points  
 Pass information into and out of functions by value rather than by (pointer) 

reference.  
 Strictly avoid classic trouble spots such as recursion, conditionally compiled code, 

and un-typed buffers. 

Information hiding, [30] also called representation independent programming, is a design 
discipline for ensuring that the internal representation of information does not 
unnecessarily perturb the correct abstract representation of that data at an interface.   

Modularity 
The use of modularity is common across most engineering disciplines,[30] it yields many 
benefits,1 and has evoked various metrics such as coherence and coupling.  However, 
modular decomposition, or refinement in system design remains somewhat of an art, 
which resists general statements of principle.  For the design of secure systems, we note 
that in addition to “function” as a basis, modular refinement based on trust, 
trustworthiness, privilege, or security policy can provide significant strength and clarity 
to a design.  For example, modular decomposition is commonly used in the following 
aspects of secure system design: 

 Allocation of policies to systems in a network 
 Allocation of a system's policies to layers 

 Separation of system applications into processes with distinct address spaces  
 Separation of processes into subjects with distinct privileges, based on rings  

Of course, subjects are typically decomposed into modules and modules into functions. 

Least Common Mechanism 
The principle of least common mechanism states that, if multiple components in the 
system require the same function or mechanism, the function or mechanism should be 
factored into a single mechanism that can be used by all of them.   Thus, the various 
components do not have redundant implementations of the same function; rather, the 
function is created once. Examples of the application of this principle include device 
drivers, libraries, and operating system resource managers.  Counter-examples have been 
described in the network context.[33] 
Using least common mechanism will help to minimize the complexity of the system by 
avoiding unnecessary duplicate mechanisms. Another benefit is maintainability, since 
modifications to the common function can be performed (only) once, and the impact of 
proposed modifications can be more easily understood in advance. Also, the use of 

                                                
1 “Choosing the proper boundaries between functions is perhaps the primary activity of the computer 
system designer. Design principles that provide guidance in this choice of function placement are among 
the most important tools of a system designer.”[33] 
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common mechanisms will facilitate the construction and analysis of (1) non-by-passable 
system properties and (2) the encapsulation of data (see also “Minimized Sharing”). 

Consideration should be given to the problem of persistent state as it relates to a common 
mechanism.  The common mechanism may need to retain state related to the context of 
the calling component.  Whenever possible, the system should be organized to avoid this 
since: (1) retention of state information can result in significant increases in complexity, 
and (2) can result in state that is shared by multiple components (see “Minimized 
Sharing”). Sometimes various forms of linking can permit a common mechanism to 
utilize state information specific to the calling component, and, with sufficient low-level 
support, the mechanism can even assume the privilege attributes of its calling component. 
[14] 

Partially Ordered Dependencies  
In applying the principle of least common mechanism, if the shared mechanism also 
makes calls to or otherwise depends on services of the calling mechanisms, creating a 
circular dependency, performance and liveness problems can result.  The principle of 
partially ordered dependencies says that the calling, synchronization and other 
dependencies in the system should be partially ordered.  
A fundamental tool in system design is that of layering [11], whereby the system is 
organized into functionally related modules or components, and where the layers are 
linearly ordered with respect to inter-layer dependencies.  While a partial ordering of all 
functions in a given system may not be possible, if circular dependencies are constrained 
to occur within layers, the inherent problems of circularity can be more easily managed 
[34]. 
Partially ordered dependencies and system layering contribute significantly to the 
simplicity and coherency of the system design (see also  “Assurance through Reduced 
Complexity”).  

Efficiently Mediated Access 
The mediation of access to resources is often the predominant security function of secure 
systems, and can result in performance bottlenecks if the system is not designed 
correctly. The principle of efficiently mediated access states that policy-enforcement 
mechanisms should utilize the least common mechanism (see above) available while 
meeting system flexibility requirements.[1] A good example of this is the use of available 
hardware memory management mechanisms to implement various access control 
functions.[14] [35]  

Minimized Sharing 
The principle of minimized sharing states that no computer resource should be shared 
between components or subjects (e.g., processes, functions,  etc.) unless it is necessary to 
do so. Minimized sharing helps to simplify the design and implementation. It is evident 
that in order to protect user-domain information from active entities, no information 
should be shared unless that sharing has been explicitly requested and granted (see also 
“Secure Defaults”). For internal entities, sharing can be motivated by the principle of 
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least common mechanism, as well as to support user-domain sharing. However, internal 
sharing must be carefully designed to avoid performance and covert channel 
problems.[21] There are various mechanisms to avoid sharing and mitigate the problems 
with internal sharing. 

To minimize the sharing induced by common mechanisms, they can be designed to be re-
entrant or virtualized, so that each component depending on that mechanism will have a 
virtual private data space. Virtualization logically partitions the resource into discrete, 
private subsets for each dependent component. The shared resource is not directly 
accessible by the dependent components. Instead an interface is created that provides 
access to the private resource subsets.  Practically any resource can be virtualized, 
including the processor, memory and devices.  Encapsulation is a design discipline or 
compiler feature for ensuring there are no extraneous execution paths for accessing the 
private subsets (see also “information hiding,” under Secure System Evolution). Some 
systems use global data to share information among components. A problem with this 
approach is that it may be difficult to determine how the information is being managed 
[43].  Even though the original designer may have intended that only one component 
perform updates on the information, the lack of encapsulation allows any component to 
do so. 

To avoid covert timing channels, in which the processor is shared, a scheduling algorithm 
can ensure that each depending component is allocated a fixed amount of time, or a 
variable amount of time that is otherwise undetectable by other components.[13] 

Reduced Complexity 
Given the current state of the art, a conservative assumption must be that every complex 
system will contain vulnerabilities, and it will be impossible to eliminate all of them, 
even in the most highly trustworthy of systems. Application of the principle of reduced 
complexity contributes to the ability to understand the correctness and completeness of 
system security functions, and facilitates identification of potential vulnerabilities. The 
corollary of reduced complexity states that the simpler a system is, the fewer 
vulnerabilities it will have. An example of this is a bank auto teller, which, due to the 
simplicity of its interface (a very limited set of requests), has relatively few functional 
security vulnerabilities compared to many other widely used security mechanisms. 
From the perspective of security, the benefit to this simplicity is that it is easier to 
understand whether the intended security policy has been captured in the system design 
(e.g., see [16]).  For example, at the security model level, it can be easier to determine 
whether the initial system state is secure and whether subsequent state changes preserve 
the system security properties. 

B. Secure Evolvability 
The principle of secure evolvability2 states that a system should be built to facilitate the 
maintenance of its security properties in the face of changes to its interface, functionality 

                                                
2 “Evolvability” is a term from biology, indicating a “class of structures [that] is particularly amenable to 
evolution.” [8] 
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structure or configuration.  These changes may include upgrades to the system, 
maintenance activities, reconfiguration, etc. (see also, Secure System Modification, and 
Secure Failures). The benefits of this principle include reduced lifecycle costs for the 
vendor, reduced cost of ownership for the user, as well as improved system security.  Just 
as it is easier to build trustworthiness into a system from the outset (and for highly 
trustworthy systems, impossible to achieve without doing so), it is easier to plan for 
change than to be surprised by it. 
Although it is not possible to plan for every possibility, most systems can anticipate 
maintenance, upgrades, and changes to their configurations.  For example, a component 
may implement a computationally intensive algorithm.  If a more efficient approach to 
solving the problem emerges, then if the component is constructed using the precepts of 
modularity and information hiding,[30][18][19] it will be easier to replace the algorithm 
without disrupting the rest of the system.    
Rather than constructing the system with a fixed set of operating parameters, or requiring 
a recompilation of the system to change its configuration, startup or runtime interfaces 
can provide for reconfiguration. In the latter case, the system designer needs to take into 
account the impact dynamic reconfiguration will have on secure state.  
Interoperability can be supported by encapsulation at the macro level: internal details are 
hidden and standard interfaces and protocols are used. For scalability, the system can be 
designed so that it may easily accommodate more network connections, more or faster 
processors, or additional devices.  A measure of availability can be planned into the 
system by replication of services and mechanisms to manage an increase in demand, or a 
failure of components. 
Constructing a system for evolution is not without limits. To expect that complex systems 
will remain secure in contexts not envisioned during development, whether 
environmental or related to usage, is unrealistic. It is possible that a system may be secure 
in some new contexts, but there is no guarantee that its “emergent” behavior will always 
be secure. 

C. Trust 
Trust-related design principles affect the system architecture with respect to the 
relationships between components, and how their dependencies and relationships can be 
organized to maximize the trustworthiness of the system.  The notion of trusted 
components is examined first. 

Trusted Components 
The principle of trusted components states that a component must be trustworthy to at 
least a level commensurate with the security dependencies it supports (i.e., how much it 
is trusted to perform its security functions by other components).  This principle enables 
the composition of components such that trustworthiness is not inadvertently diminished 
and consequently, where trust is not misplaced. 
Ultimately this principle demands some metric by which the trust in a component and the 
trustworthiness of a component can be measured; we assume these measurements are on 
the same, abstract, scale. This principle may be particularly relevant when considering 



Design Principles and Guidelines for Security 

  
9 

systems and components in which there are complex “chains” of trust dependencies. 
The principle is stated more formally: 

Basic types 
component   
t: integer  /* level of trust or trustworthiness – this is cast as integer for  

convenience - any linear ordering will do */ 
System constant functions and their axioms  

trustworthy(a: component): t  /* a is trustworthy to the degree of t */ 
depend(a, b: component): boolean  /* a depends on b */ 
sec_depend(a, b: component): boolean  /* a is security dependent on b */ 

axiom 1.. ∀ a, b: component( 
sec_depend(a, b)  

⇒ depend(a, b)) /* but not visa versa */ 
trust(a, b: component): t  /* the degree of sec_depend */ 

axiom  2.. ∀ a, b:component( 
 sec_depend(a, b)  

⇒ trust (a,b) > 0)  
Principle of trusted components.  
 ∀ a, b:component( 

   sec_depend(a,b) ⇒ 
    trust(a,b) ≤ trustworthy(b)) 

A compound component consists of several subcomponents, which may have varying 
levels of trustworthiness.  The conservative assumption is that the overall trustworthiness 
of a compound component is that of its least trustworthy subcomponent. It may be 
possible to provide a security engineering rationale that the trustworthiness of a particular 
(e.g., class of) compound component is greater than the conservative assumption, but a 
general analysis to support such a rationale is outside of the scope of this report. 

subcomponent(a, b:component): boolean  /* a is a subcomponent of b */ 
axiom 3.. ∀ a, b:component(  /* sub-component trustworthiness */ 

  subcomponent(a,b) ⇒ 
   trustworthy(b) ≤  trustworthy(a)) 

Hierarchical Trust for Components  
The corollary of hierarchical trust for components states that the security dependencies in 
a system will form a partial ordering if they preserve the principle of trusted components. 
To be able to analyze a system comprised of heterogeneously trustworthy components for 
its overall trustworthiness, it is essential to eliminate circular dependencies with regard to 
trustworthiness.  Clearly, if a more trustworthy component located in a lower layer of the 
system were to depend upon a less trustworthy component in a higher layer, this would, 
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in effect, put them in the same equivalence class: less trustworthy.   
Trust chains have various manifestations.  For example, the root certificate of a certificate 
hierarchy is the most trusted node in the hierarchy, whereas the leaves may be the least 
trustworthy nodes in the hierarchy.  Another example occurs in a layered high assurance 
secure system where the security kernel (including the hardware base), which is located 
at the lowest layer of the system, is the most trustworthy component. 

This principle does not prohibit the use of overly trustworthy components.  For example, 
in a low-trust system the designer may choose to use a highly trustworthy component, 
rather than one that is less trustworthy because of availability or other criteria (e.g., an 
open source based product might be preferred). In this case, the dependency of the highly 
trustworthy component upon a less trustworthy component does not degrade the overall 
trustworthiness of the resulting system.  

Inverse Modification Threshold 
The corollary of inverse modification threshold states that the degree of protection 
provided to a component must be commensurate with its trustworthiness. In other words, 
as the criticality of (i.e., trust in) a component increases, the protections against its 
unauthorized modification should also increase. This protection can come in the form of 
the component’s own self-protection and trustworthiness, or from protections afforded to 
the component from other elements or attributes of the architecture. Unauthorized 
modification could take place through penetration of the component (e.g., an attack that 
bypasses the intended interfaces), misuse of poorly designed interfaces, or from 
surreptitiously placed trapdoors.   

Techniques to show the absence of trapdoors and penetration vulnerabilities can be 
applied to the construction of highly trustworthy components.  Examples of the 
application of this principle can be seen in the hardware, microcode, and low level 
software of trustworthy systems: none of these elements is easy to modify.   

Hierarchical Protection 
The principle of hierarchical protection states that a component need not be protected 
from more trustworthy components.  In the degenerate case of the most trusted 
component, it must protect itself from all other components.  In another example, a 
trusted computer system need not protect itself from an equally trustworthy user, 
reflecting use of untrusted systems in “system high” environments where the users are 
highly trustworthy. 

Minimized Security Elements 
The principle of minimized security elements states that the system should not have 
extraneous trusted components.  This principle has two aspects: cost and complexity of 
security analysis. Trusted components, necessarily being trustworthy, are generally more 
costly to construct, owing to increased rigor of development processes (see “Procedural 
Rigor”).  They also require greater security analysis, to qualify their trustworthiness. 
Thus, to reduce cost, and decrease the complexity of the security analysis, a system 
should contain as few trustworthy components as possible.  
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The analysis of the interaction of trusted components with other components of the 
system is one of the most important aspects of the verification of system security.  If 
these interactions are unnecessarily complex, the security of the system will also be more 
difficult to ascertain than one whose internal trust relations are simple and elegantly 
constructed. Generally, fewer trusted components will result in fewer internal trust 
relationships and a simpler system.  For example, a novice multilevel secure system 
designer may be tempted to solve every security problem with one or more “trusted 
subjects,” creating a system that is unnecessarily complex. 

Least Privilege 
The principle of least privilege [32]states that each component should be allocated 
sufficient privileges to accomplish its specified functions, but no more.  This limits the 
scope of the component’s actions, which has two desirable effects: (1) security impact of 
a failure of corruption of the component will be minimized, and (2) the security analysis 
of the component will be simplified.  The result is a safer and more understandable 
system. 
Least privilege is such a pervasive principle that it is reflected in all aspects of the 
system. For example, interfaces may be constructed that are available to only certain 
subsets of the user population.  In the case of an audit mechanism, there may be an 
interface for the audit manager, who configures the audit settings; an interface for the 
audit operator, who ensures that audit data is safely collected and stored; and, finally, yet 
another interface for the audit reviewer.  
In addition to its manifestations at the system interface, least privilege can be used as a 
guiding principle for the internal structure of the system itself. This can take several 
forms.  Closely aligned with the notions of modularity and encapsulation, one aspect of 
internal least privilege is to construct modules so that only the elements encapsulated by 
the module are directly operated upon.[43] Elements external to a module that may be 
affected by the module’s operation are indirectly accessed through interaction (e.g., via a 
function call) with the module that contains those elements.  Another aspect of internal 
least privilege is that the scope of a given module or component should only include 
those system elements that are necessary for its functionality, and that the modes by 
which the elements are accessed should also be minimal. 

Self-reliant Trustworthiness 
The principle of self-reliant trustworthiness states that systems should minimize their 
reliance on external components for system trustworthiness.  If a system were required to 
maintain a connection with another external entity in order to maintain its 
trustworthiness, then that system would be vulnerable to drops in the connection.  
Instead, a system should be trustworthy by default with the external connection used as a 
supplement to its function. 

The benefit to this principle is that the isolation of a system will make it less vulnerable 
to attack. Clearly, if this were not the case, then attack scenarios would be devised to 
isolate the system and thus bring down its defenses.  In a highly networked environment, 
this would be a problem for the targeted system, but also perhaps calamitous for other 
systems on the network. 
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A corollary to this relates to the ability of the component to operate in isolation and then 
resynchronize with other components when it is rejoined with them (see the principle of 
secure failures). 

D. Secure Composition 

In composing any system, the principles found in the previous sections should be applied.  
Additional considerations are required for distributed systems. 

Secure Distributed Composition 
Many of the design principles for secure systems deal with how components can or 
should interact (e.g., see Hierarchical Trust). The composition of distributed components 
can magnify the relevancy of these principles.  In particular, the translation of security 
policy from a stand-alone to a distributed system can have unexpected “emergent” results 
(see also, Secure System Evolution in II.B). The principle of secure distributed 
composition states that the composition of distributed components that enforce the same 
security policy should result in a system that enforces that policy at least as well as the 
individual components do.  For example, consider a set of components that support 
similar subjects and objects [20] and enforce the same access control policy on those 
objects.  Under this principle, if the components are composed into a distributed system 
that supports the same policy, and information contained in objects is transmitted 
between components, then the transmitted information must be at least as well protected 
in the receiving component as it was in the sending component.  Communication 
protocols and various distributed data consistency mechanisms can help to ensure 
consistent policy enforcement across a distributed system. 

In another example, consider a distributed system in which all subjects and objects are 
associated with labels from a sensitivity hierarchy of Top Secret (TS), Secret (S), 
Confidential (C), Unclassified (U), and the usual multilevel mandatory access control 
policy  is enforced. Also, since the system components are not very trustworthy, each 
component may only present to users information with “adjacent” sensitivity (e.g., 
component A handles TS and S, and component B handles S and C), so that in the event 
of leakage, the information does not leak too “far.”  The networking (i.e., composition) of 
components A and B can result in a “cascade” of sensitivities such that if A leaks TS 
information to an S user, TS information can wind up on B, presenting users with a wider 
range of sensitivities than the system policy allows.[26]  

Thus, to ensure correct system-wide level of confidence of correct policy enforcement, 
enforcement, the security architecture of a distributed composite system must be 
thoroughly analyzed.  

Trusted Communication Channels 
The principle of secure communication channels states that when composing a system 
where there is a potential threat to the communication between components (i.e., the 
channels are not physically secured), each communications channel must be trustworthy 
to a level commensurate with the security dependencies it supports (i.e., how much it is 
trusted to perform its security functions by other components). Several techniques can be 
used to mitigate threats, and enhance the trustworthiness of communication channels.  
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Three are discussed here. 
First, use of the channel may be restricted by protecting access to it with a suitable access 
control mechanism such as a reference monitor located beneath or within each 
component. By controlling and limiting access to the channel, possible misuse of the 
channel can be reduced. In addition, the components with authorized access to the 
channel may be more trustworthy than other components, and network covert channels 
must be considered in this context.[29]  
Second, end-to-end communications technologies, such as encryption, may be used to 
eliminate security threats in the channel's physical environment. In some cases, an 
alternative to platform-based encryption is the use of in-line encryption devices.  When 
such devices are employed, they must be at least as trustworthy as the reference monitors 
of the linked components. 

Finally, intrinsic characteristics assumed for and provided by the channel must be 
specified.  With such documentation, it is possible for system designers to understand the 
nature of the channel as initially constructed and to assess the impact of any subsequent 
changes to the system. 

III. Logic and function 
The principles associated with logic and function are applicable at both the system and 
component level.  These describe behavior that must be built into the system to achieve 
security. 

Continuous Protection of Information 
Principle of continuous protection of information states that information protection 
required by the security policy (e.g., access control to user-domain objects) or for system 
self-protection  (e.g., maintaining integrity of kernel code and data) must be protected 
with a continuity consistent with the security policy and the security architecture 
assumptions. No guarantees about information integrity, confidentiality or privacy can be 
made if it is left unprotected while under control of the system (i.e., during the creation, 
storage, processing or communication of the information and during system initialization, 
execution, failure, interruption, and shutdown). Following the precepts of the reference 
monitor [2], to provide continuous enforcement of the security policy, every request must 
be validated, and the reference monitor must protect itself. Invalid requests should not 
result in a system state such that the system cannot properly enforce the security policy.  
The principle of secure failure also applies here in that it involves a roll back mechanism 
that can return the system to a secure state. 
To ensure protection, parameters at interfaces must be chosen so that security critical 
values are provided by more trustworthy components.  To ensure continuity, security-
relevant operations can be made to be atomic.  Furthermore, during computation various 
low-level hardware mechanisms can be used such as instructions that enable switching 
contexts atomically and mechanisms that enable memory protection.  

In some environments, it is desirable to allow the system security policies to be 
“modifiable” at runtime, for example to adjust to catastrophic external events. Changes to 
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policies must not only be traceable but also verifiable, i.e., must be possible to verify that 
the changes do not violate security policies. The system architect should understand the 
consequences of allowing modifiable policies in a system i.e., depending on the type of 
access control and the actions that are allowed and controlled by the policies, certain 
configuration changes may lead to inconsistent states or discontinuous protection due to 
the complex or undecidable nature of the problem. One approach to this problem is the 
use of pre-verified configuration definitions where the transition from old to new policies 
is effectively atomic and any residual effects from the old policy are guaranteed to not 
conflict with the new policy. 

Secure Metadata Management  
Data is generally un-interpreted by the system that stores it.  It may have semantic value 
(i.e., it comprises information) to users and programs that process the data.  Metadata is 
information about data, such as a file name or the date when the file was created. 
Metadata is bound to the target data that it describes in a way that the system can 
interpret, but it need not be stored inside of or proximate to its target data.  There may be 
metadata whose target is itself metadata (e.g., the sensitivity level of a file name). Also, 
the metadata for a given datum need not be homogeneous (e.g., suppose that the “size” of 
each file attribute is recorded for disk-management purposes; then, the size of a file’s 
“name” attribute could be different than the size of its “last-modified date”).  To avoid 

additional layers of abstraction, metadata can be self-referential, as shown in Figure 2. 
The apparent secondary nature of metadata can lead designers to neglect its protection, 
resulting in security problems such as covert channels and unintended trap doors.   For 
example if the payload of a datagram is protected, but the rest of it is not commensurately 
protected, then the address fields and other metadata of the datagram might be used to 
exfiltrate information from a system in violation of the security policy – resulting in what 
has been called network covert channels.[29] The principle of secure metadata 

 
Figure 2 
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management states that metadata must be considered as first class objects with respect to 
the security policy when the policy requires complete protection of information or it 
requires the security subsystem to be self-protecting. 
MLS Metadata Issues 
Multilevel secure (MLS) computing systems mediate access by a subject to an object 
based on their relative sensitivity levels.  It follows that all subjects and objects in the 
scope of control of the MLS system must be directly labeled or indirectly attributed with 
sensitivity levels (e.g., by labeling groups of physically isolated objects).  The corollary 
of labeled metadata for MLS systems says that objects containing metadata must be 
labeled – which allows for complete policy enforcement.  An example in an MLS file 
system is that directories, as well as files, are attributed with sensitivity levels.[15] 
Following the principle of secure metadata management, the sensitivity of a given meta-
datum is distinguishable from the sensitivity of its target data, e.g., a directory need not 
have the same label as the files in the directory. An example of meta-data that is of a 
different sensitivity than its target data is the name of a file, such as a  “Five-year 
Corporate Plan.”  In this case, the law may require that the document exists, but the 
Board of Directors may consider the contents (i.e., the target data) to be too sensitive to 
be publicly released. 

The “compatibility property” [41][6] is a standard approach used in the construction of 
multilevel data structures, which states metadata is never more confidential than its target 
data.  In the file system example, this would ensure that files of a given level couldn’t be 
orphaned (not be reachable by users of that level) by directories of higher sensitivity. The 
parallel for integrity policies is that the integrity level of data cannot be greater than the 
integrity of its metadata.3    

The dichotomy of confidentiality and integrity is significant.  A common mistake is to 
attempt to enforce integrity constraints through the application of confidentiality 
restrictions, which can lead to unforeseen consequences.  For example, a suggested 
alternative to compatibility of confidentiality in file systems was that “a parent should be 
more [confidential] than its children because it contains crucial information about them 
… this way, no subject could introduce errors into the metadata of any object without 
having been granted a higher level of clearance than the object itself.”[7]  In another 
example, a system may restrict access by high confidentiality subjects to low 
confidentiality sources (such as the Internet) in order to prevent corruption of the high 
confidentiality domain.  However, the assumption that all high confidentiality subjects 
have high integrity can be misleading. 

Self Analysis 
The principle of self-analysis states that the component must be able to assess its internal 
functionality to a limited extent (within the limits of the “incompleteness theorem”) at 

                                                
3 The applicability of the compatibility property to structures other than file systems has not been 
established, to our knowledge, although it may prove to be interesting in areas such as the use of XML to 
manage MLS data. 
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various stages of execution and that this self-analysis capability must be commensurate 
with the level of trustworthiness invested in the system.  

At the system level, self-analysis can be achieved via hierarchical trustworthiness 
assessments established in a bottom up fashion. In this approach [4], the lower level 
components check for data integrity and correct functionality (to a limited extent) of 
higher-level components. For example, trusted boot sequences involve a lower level 
component attesting to the trustworthiness of the next higher-level components so that a 
transitive trust chain can be established. At the root, a component attests to itself, which 
usually involves an axiomatic or environmentally enforced assumption about its integrity. 
These tests can be used to guard against externally induced errors or internal malfunction 
or transient errors. By following this principle, some simple errors or malfunctions can be 
detected without allowing the effects of the error or malfunction to propagate outside the 
component. Further, the self test can also be used to attest to the configuration of the 
component, detecting any potential conflicts in configuration with respect the expected 
configuration. 

Accountability and Traceability 
The principle of accountability and traceability states that actions that are security-
relevant must be traceable to the entity on whose behalf the action is being taken. 

This principle requires the designer to put into place a trustworthy infrastructure that can 
record details about actions that affect system security (e.g., an audit subsystem). To do 
this, the system must not only be able to uniquely identify the entity on whose behalf the 
action is being carried out, but also record the relevant sequence of actions that are 
carried out. Further, the accountability policy ought to require the audit trail itself be 
protected from unauthorized access and modification. The principle of least privilege aids 
in tracing the actions to particular entities, as it increases the granularity of 
accountability. Associating actions with system entities, and ultimately with users, and 
making the audit trail secure against unauthorized access and modifications provide non-
repudiation, as once some action is recorded, it is not possible to change the audit trail. 

Another important function that traceability and accountability serves is in the analysis of 
events leading to violation of security policy. If a security violation occurs, analysis of 
the audit log may provide additional information that may be helpful in determining the 
path or component that allowed the violation of security policy. 

Secure defaults 
The principle of secure defaults applies to the initial configuration of a system as well as 
to the negative nature of access control and other security functions. First, the “as 
shipped” configuration of a system or component should not aid in violation of security 
policy.  There have been many examples in recent years of commercial systems that have 
arrived in a configuration that was not adequately self-protective, resulting in security 
breaches before the correct configuration could be established.  Some examples of 
mechanisms for which secure initial configuration may apply are audit, firewalls and 
passwords.  
The second part of this principle says that security mechanisms should deny requests 
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(e.g., to obtain access to a file) unless the request is found to be well formed and 
consistent with the security policy.  The alternative is to allow a request unless it is 
shown to be inconsistent with the policy. In a large system, the conditions that must be 
satisfied to grant a request that is by default denied are often far more compact and 
complete than those that would need to be processed to deny a request that is by default 
granted (for example, consider the filtering rules in a firewall). 

Secure Failure 
The principle of secure failure states that a failure in a system function or mechanism 
should not lead to violation of security policy. Failure is a condition in which a 
component’s behavior deviates from its specified behavior for an explicitly documented 
input (unspecified behavior, which includes response to inputs that do not conform to 
specification, is addressed in IV). Ideally, the system should be capable of detecting 
failure at any stage of operation (initialization, normal operation, shutdown, maintenance, 
error detection and recovery) and take appropriate steps to ensure security policies are not 
violated. 
Once a failed security function is detected, the system may reconfigure itself to 
circumvent the failed component, while maintaining security, and still provide all or part 
of the functionality of the original system, or completely shut itself down to prevent any 
(further) violation in security policies. For this to occur, the reconfiguration functions of 
the system should be designed to ensure continuous enforcement of security policy 
during the various phases of reconfiguration. Another mechanism that can be used to 
recover from failures is to rollback to a secure state (which may be the initial state) and 
then either shutdown or replace the service or component that failed with orthogonal or 
replicated mechanisms.  

Failure of a component may or may not be detectable to the components using it. The 
principle of secure failure indicates that components should fail in a state that denies 
rather than grants access.  For example, a nominally “atomic” operation interrupted 
before completion should not break security policy and hence must be designed to cope 
with interruption events by employing higher level atomicity and rollback mechanisms 
such as transactions, etc. If a service is being used, its atomicity properties must be well 
documented and characterized so that the component availing itself of that service can 
detect and handle interruption events appropriately. For example, a system should be 
designed to gracefully respond to disconnection and support resynchronization and data 
consistency after disconnection. 

Replication of policy enforcement mechanisms, sometimes called defense in depth, can 
allow the system to continue securely even when one mechanism has failed to protect the 
system. If the mechanisms are similar, however, the additional protection may be 
illusory, as the intruder simply attacks in parallel.  Similarly, in a networked system, 
breaking the security on one system or service may enable an attacker to do the same on 
other similar replicated systems and services. By employing multiple protection 
mechanisms, whose features are significantly different, the possibility of attack 
replication or repetition can be reduced. However, it should be noted redundancy 
techniques may increase resource usage and may adversely affect the system 
performance. 
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When data cannot be continuously protected, it is critical to detect any security breaches 
before the data is once again used in a secure context.  For example, during 
communications data could be damaged, causing a security failure if not detected. The 
time-of-check-to-time-of-use principle is that checks for a property (e.g., integrity) should 
be performed at some point after the property could have been compromised.[32] 

Economic Security 
The principle of economic security states that security mechanisms should not be more 
costly than the potential damage of a security breach.  This is a form of the cost-benefit 
analysis used in information technology risk management.[38] The cost assumptions of 
this analysis will prevent the designer from incorporating security mechanisms of greater 
strength than necessary, where strength of mechanism is proportional to cost.  
In applying this principle, “chains of trust” in which the security of the system is entirely 
dependent on individual links (or subsets of links) are complicated to assess. Such a 
system is no more trustworthy than its least trustworthy link (e.g., as opposed to a defense 
–in-depth layering, where the protection is additive). Damage to the enterprise can far 
exceed the cost of individual protection mechanisms, but there may be many mechanisms 
whose costs must be considered.  

Performance Security  
The principle of performance security states that security mechanisms should be 
constructed so that they do not degrade system performance unnecessarily. To support 
this, system requirements for performance and security must be precisely articulated and 
prioritized.  For the system implementation to meet its requirements, the designers must 
adhere to the specified balance of performance and security. For example, in a banking 
system, an animated user interface may not be as critical as protecting user’s financial 
assets. 
Cryptography is one of the basic mechanistic building blocks used in secure systems. 
Computationally intensive cryptographic services should not be used unless simpler 
mechanisms are unavailable or insufficient. When used, the strength of encryption must 
be selected appropriately with respect to security requirements as well as performance-
critical overhead issues such as key storage, key exchange, exposed attack space etc. 
Application of this principle reinforces the requirement to design the system from the 
ground up, i.e., to incorporate simple mechanisms at the lower layers that can be used as 
building blocks for higher-level mechanisms. 
The principle of performance security forces the designer to incorporate features that aid 
in enforcement of security policy, but incur minimum overhead, such as low-level 
hardware mechanisms on which higher-level services can be built. Such low level 
mechanisms are usually very specific, have very limited functionality, and are heavily 
optimized for performance.  For example, once access rights to a portion of memory is 
granted, hardware mechanisms may be used to ensure that all further accesses involve the 
correct memory address and access mode[1]. 
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Ergonomic Security 
The principle of ergonomic security states that the user interface for security functions 
and supporting services should be intuitive and user friendly, and provide appropriate 
feedback for user actions that affect policy and its enforcement. The mechanisms that 
enforce security policy should not be intrusive to the user and should be designed not to 
degrade user efficiency.  

There is often a tradeoff between usability and the strictness of policy enforcement. For 
example, if every action that requires authorization required the user to prove their 
identity explicitly, it would be intrusive, annoying, and could potentially make the system 
unusable. To overcome this deficiency, the designer may decide to cache credentials for 
an appropriate duration and use them to enforce policy. However, caching credentials 
adds complexity to the system and their use  creates new vulnerabilities.   

The system should provide the user with feedback and warnings when insecure choices 
are being made.  For example, web interfaces often warn users that information may not 
be protected during transmission. In such cases, a user may reconsider entry of personal 
information. The designer must seek a solution that both satisfies the security policy 
requirements and makes the system easy and efficient to use.  
Care must also be given to interfaces through which system administrators configure and 
setup the security policies.  Ideally, system administrators must be able to understand the 
impact of their choices. They must be able to configure systems before startup and 
administer them during runtime, in both cases with  confidence that their intent is 
correctly mapped to the system’s mechanisms. 

Acceptable Security 
The principle of acceptable security requires that the level of privacy and performance 
the system provides should be consistent with the users’ expectations. The perception of 
personal privacy may affect user behavior, morale and effectiveness. Based on the 
organizational privacy policy and the system design, users should able to restrict their 
actions to protect their privacy. When systems fail to provide intuitive interfaces or meet 
privacy and performance expectations, users may either choose to completely avoid the 
system or use it in ways that may be inefficient or even insecure.  

Thus ergonomic and acceptable security, coupled with user education, are essential. 

IV. System life cycle 
Several principles guide a definition of the system life cycle that is necessary to achieve 
the initial and continuing security of the system. Secure lifecycle contributes to system 
elegance and maintainability, as well as system integrity.[25] 

Repeatable, Documented Procedures 
The principle of repeatable and documented procedures means that the techniques used to 
construct a component should permit the same component to be completely and correctly 
reconstructed at a later time. Repeatable and documented procedures support the creation 
of  a component that are identical to the component created earlier that may be in 
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widespread use. In the case of other system artifacts (such as documentation and testing 
results), repeatability supports consistency and inspectability.    

A procedure can range from a script to compilable code, to steps taken for the reporting 
and remediation of system deficiencies.  Procedures may be formalized and can be based 
upon standards. For example, the Common Criteria [17] provide a framework for the 
derivation of system requirements that is comprised of the following steps: definition of 
system goals and its concept of operation; identification of threats to the defined system; 
identification of assumptions regarding the system and its environment; identification of 
organizational policies external to the system; identification of security objectives for the 
system and its environment based on previous steps; and specification of requirements 
that will meet the objectives. 

Procedural Rigor 
The principle of procedural rigor states that the rigor of the system life cycle process 
should be commensurate with its intended trustworthiness.  Procedural rigor defines the 
depth and detail of the system lifecycle procedures.  These procedures contribute to the 
assurance that the system is correct and free of unintended functionality in two ways.  
First, they impose a set of checks and balances on the life cycle process such that the 
introduction of unspecified functionality is thwarted. Second, rigorous procedures applied 
to specifications and other design documents contribute to the ability to understand the 
system as it has been built, rather than being misled by an inaccurate system 
representation, thus helping to ensure that its security and functional objectives have been 
met.  

Highly rigorous development procedures supporting high trustworthiness are costly to 
follow.  However, the lowered cost of ownership resulting from fewer flaws and security 
breaches during the product maintenance phase can help to mitigate the higher initial 
development costs associated with a rigorous life cycle process. 

Secure System Modification 
The principle of secure system modification states that system modification procedures 
must maintain system security with respect to the goals, objectives, and requirements of 
its owners. Upgrades and modifications to systems can transform a secure system into an 
insecure one.  The procedures for system modification must ensure that, if the system is 
to maintain its trustworthiness, the same rigor that was applied to its initial development 
must be applied to any changes.  Because modifications can affect a system’s ability to 
maintain secure state, careful security analysis of the modification is needed prior to its 
implementation and deployment. This principle parallels the principle of secure system 
evolution in Section II. 

Sufficient User Documentation 
The principle of sufficient user documentation states that users should be provided with 
adequate documentation and other information such that they contribute to rather than 
detract from system security. Even though the system may be designed for ergonomic 
security, its use may not be intuitively obvious. The availability of documentation and 
training can help to ensure a knowledgeable cadre of users and administrators. Where 
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complexity must be minimized and where on-line documentation is inadequate, clearly 
written documentation and appropriate training is needed. If users do not know how to 
use a component properly, do not know standard security procedures, or do not know 
proper behavior to prevent social engineering attacks, they can easily introduce new 
system vulnerabilities.  

V. Commentary and Lessons Learned 
Include Security in Design from the Start 
The problem with system security is that it is easy to find flaws, but it is difficult to find 
all flaws.  Thus, if post-development flaw discovery and remediation is chosen as the 
path to achieving a secure system, then it is difficult to make a statement regarding the 
completeness of the security mechanism.  Similarly, security functions that are added to a 
pre-existing system require analysis to ensure that they will perform with the level of 
trustworthiness intended.  This analysis will extend to all elements depending on or upon 
which the security addition depends, as well as all resources shared by the addition, e.g. 
global data.  Furthermore, unless the system has already been rigorously developed, the 
security analysis is likely to become so complex that starting anew would be more 
effective. 

Generally, security redesign results in significant restructuring of existing systems so that 
they are aligned with the principles stated in Section I.  Again, at a certain point it is 
prudent to apply the principles a priori rather than to attempt a retrofit. 

The Philosopher’s Stone  
Experience has shown that when the principles described herein are applied to the 
construction of a system, development time and effort may rise in comparison to typical 
“time to market” driven commercial development practices. This conflict has resulted in 
various proposals for using untrustworthy components to achieve trustworthy systems, 
with mixed results. 
Replication and other forms of fault tolerance have been described as candidates for 
developing trustworthy systems from untrustworthy components.[27] Although there are 
a number of constructs and techniques shared between security and fault tolerance [5], 
the presence of fault tolerance does not necessarily achieve security, and, conversely, 
security does not necessarily result in fault tolerance. 

Similarly, the notion of “defense in depth” [10] describes security derived from the 
application of multiple mechanisms, e.g., to create a series of barriers against attack by an 
adversary.  However, there is no theoretical basis to assume that defense in depth, in and 
of itself, could imply a level of trustworthiness greater than that of the individual security 
components. Without a sound security architecture and supporting theory, the non-
constructive nature of these approaches renders them equivalent to temporary patches. 

“Balanced assurance” [36][23] defines a hierarchy of security policies, where different 
policies may be allocated to different components of a system.  In this approach, the 
trustworthiness of a given component must be consistent with the importance of that 
component’s policy (i.e., greater importance requires greater trustworthiness).  It is said 
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that when the components are composed according to a precisely described set of rules, 
the trustworthiness of the resulting system will be equal to that of the most trustworthy 
component.  While this approach shows promise with respect to specific examples, a 
coherent generalization has not been defined. 

Other Approaches to Secure System Composition 
A significant part of the cost of building a secure system is that of demonstrating its 
trustworthiness through its “evaluation” by a third party.[17]  An approach to lowering 
these costs is to use components that have already been evaluated as to their 
trustworthiness, and thereby bypassing or minimizing the need to evaluate the system 
itself.[36]   

A variety of formal analyses have been performed to support the composition of security 
components by modeling the security properties that would result.[24]   Also, there has 
been support for  “evaluation by pieces,” which would acknowledge previously evaluated 
components, and not require their examination in the evaluation of the composite system.  
However, this approach has only been made available to “low assurance” systems, as it 
lacks a well-formed theory of correctness. 

The Reference Monitor  
The reference monitor concept [2] is an abstraction for the necessary and sufficient 
features of the component that enforces access control in a secure system. Its three 
characteristics are: the mechanism is protected from modification so that it always is 
capable of enforcing the intended access control policy; it cannot be bypassed, so that it is 
always consulted about requests to access to the information it is intended to protect; and 
it is understandable.  To date, no viable alternative to the reference monitor concept has 
been proposed. 

Because it is so abstract, the reference monitor concept provides no details regarding how 
an implementation might be constructed. Implementations will, to a greater or lesser 
extent, attempt to achieve the abstraction. The principles discussed in this document 
apply to the design and implementation of real systems. Some of those principles map 
directly to the reference monitor concept itself, while others provide the framework for 
constructing an implementation that is as close as currently possible to the idealized 
mechanism. For example, the principle of continuous protection of information clearly 
supports the reference monitor’s notion of non-bypassability. Principles found in the 
context of Structure/Trust contribute to the ability of the mechanism to protect itself from 
tampering. A large number of the principles apply to the understandability of the 
mechanism, but some go beyond the original abstraction to address issues such as large-
scale composition, maintainability, evolution, performance, and usability 

Conflicts in Design Principles 
Design principles need to be scoped and revisited during development, since there can be 
potential conflicts between their system specific interpretations. One principle can 
override or alter another principle. Though listing all potential conflicts is beyond the 
scope of this study, one example is the conflict between requirements of software 
engineering principle of “portability and reusability” and that of minimization; another is 
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“minimized sharing” vs. “least common mechanism.” These conflicts might not be 
satisfied simultaneously, but  depending on the goals of the system, one principle may be 
emphasized to a greater extent than the other.   
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